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Time-dependent aspects of the mechanical

properties of plant and vegetative tissues
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Based on a single regular cell structural model, the effects of loading rate on the
compressive behaviour of plant and vegetative tissues have been qualitatively
investigated. The cell walls were treated as a polymeric composite material with
microfibrils embedded in the highly structured cell wall matrix. The rubber elasticity, the
turgor permeability and the loading rate were taken into account to qualitatively predict the
tissue stiffness, cell wall stress, turgor pressure, cell debonding force, and the percentage
of weight loss of the cell fluid. The predicted results are consistant with the related
experimental phenomena. C© 2003 Kluwer Academic Publishers

1. Introduction
Fruit and vegetables are food products. It has long been
recognised that freezing and cooking can dramatically
change the structural and mechanical properties of plant
and vegetable tissues [1–3], and those properties are
directly related to oral sensory perception. In raw (un-
processed) fruit and vegetables, the fluid is retained by
the cell membrane inside the cell walls. Cell membrane
is the lipidbilayer containing the cell. Cell wall is cel-
lulosic fibre composite. When plant and vegetables are
processed by freezing or cooking, the cell membrane
can be destroyed in different degrees, and the fluid can
express through the cell walls. Hence, the mechanical
properties of the processed plant and vegetable tissues
are loading-rate dependent.

Relatively low loading rates have been studied in raw
materials [1, 4–9], while in-mouth deformation rates
are usually very high [10–12]. To link the mechanical
and sensory properties of a plant or vegetable tissue,
a wide range of strain rate should be considered. In
processed plant and vegetables, if the loading rate is
very low, the fluid in the tissue is relatively free to flow
through the cell walls, hence the internal pressure can
not be built up in the tissue. If the loading rate is high
enough, the fluid in the tissue could be trapped in the
cells and the tissue behaves in a similar way to the
raw (unprocessed) tissue. Theoretical and experimental
results indicate that both the tissue stiffness and the
cell wall stress increase with increasing cell turgidity
[13–16]. Hence, increasing the loading rate or the turgor
pressure decreases the compressive stress at failure of
the tissues, such as potato and apple [17, 18].
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Although some experimental work has been carried
out to investigate the effects of loading rate on the
mechanical properties of plant and vegetable tissues,
very little theoretical analysis has been done to pre-
dict the mechanical behaviour of plant and vegetable
tissue. Using a two dimensional hexagonal cell model
and assuming that the cell wall material is linear elas-
tic, Pitt and Chen [19] have qualitatively analysed the
effects of loading rate on the mechanical response of
vegetative tissues. However, the cell walls of plant or
vegetables are polymeric composite materials with mi-
crofibrils embedded in the highly structured cell wall
matrix. The aim of this work is to qualitatively relate
fluid diffusion, loading rate, and the cell wall elasticity
to the mechanical behaviour of the whole tissue of plant
or vegetables. The analysis is based on a three dimen-
sional hexagonal cell structural model. The cell walls
are treated as a rubber-like (polymeric) material, and
the case of cell walls with microfibrils stiffening has
been taken into account. The emphasis is focused on
the mechnaical properties, hence the extremely com-
plex situation in the living cells has been greatly sim-
plified in this analysis. However, the analytical results
should give qualitative insight into the response of the
actual tissue.

2. Model development
The model and the analysis developed in this paper
are the direct extension of our previous work [16].
As before, we use an array of identical, regular three
dimensional hexagonal cells to present the plant or
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Figure 1 (a) Two-dimensional projection of a cellular tissue of plant or
vegetable as thin-walled, fluid-filled shells; (b) Cell wall tensions Th1 and
Ts1, intercellular debonding tensions Qh1 and Qs1, intercellular shear
stress Ss1, the characteristic angle � and the cross-sectional dimensions
of a deformed cell.

vegetable tissue (see Fig. 1a). The cells are thin-walled
(less than 10 percent by volume, [20]) and fluid-filled
vessels with a positive internal turgor pressure. Each
cell wall is shared by the two neighbouring cells (actu-
ally each cell has its own primary cell wall, however,
the “cell wall” we adopt here in the mechanics models
consists of the two primary walls of the neighbouring
cells, which are glued by a much thinner layer of mid-
dle lamella). The cell walls are assumed to be a com-
posite material, consisting of matrix and microfibrils.
The polymer-based cell wall matrix is comparatively
amorphous in structure [21–23], hence, it is assumed
to be mechanically isotropic. The microfibrils embed-
ded in the matrix consist of highly structured, crys-
talline cellulose-based polymer strands of low extensi-
bility. These strands withstand stress with a minimum of
stretching [22] and by re-orientation. The microfibrils
have different elastic properties in different directions
due to different structural arrangements of their con-
stituent polymer molecules. The cell walls are supposed
to be uniform in thickness for each face and treated as a
mechanically homogenous polymeric composite mate-
rial with microfibrils embedded in the matrix. Owing to
the fact that the cell walls are made of polymers, they are
assumed to be conserved in volume (i.e. λ1λ2λ3 = 1,
λ1, λ2 and λ3 are the three principle extension ra-
tios of the cell wall materials), and therefore polymer

mechanics can be applied. For a homogeneous,
isotropic and incompressible elastic material, as long
as the strain energy function W is known, the three
principal Cauchy stresses can be expressed by [24]

τi = λi
∂W

∂λi
+ p (1)

where, p is an arbitrary hydrostatic stress due to the fact
that an arbitrary hydrostatic stress does not contribute
to the deformation energy.

Not all non-linear elastic materials have a strain-
energy function. Those that do are called hyperelastic
materials. The derivation of the strain energy function is
based on either experimental measurement or structural
molecular theory. For isotropic materials, the strain en-
ergy W can be expressed as functions of the strain
invariants I1 and I2 (and I3 = 1), such as the Rivlin
series [25]. However, the mechanical properties of the
cell walls of plant or vegetable tissues are different in
different directions due to the microfibrillar stiffening.
This is incorporated into the analysis by defining direc-
tional microfibrillar stiffening factors k1 and k2 respec-
tively for the circumferential and the axial directions. In
the remaining third direction (i.e. the cell wall thickness
direction) there are no microfibrillar restrictions to pre-
vent wall thinning during expansion, hence k3 = 1.0.
The stiffening of the microfibrils can be incorporated
into the pseudo-strain-energy function of the cell wall
materials, and given by
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(2)

where, C1 and α are the material constants of the cell
wall matrix, and λ1, λ2 and λ3 are the three principle ex-
tension ratios of the cell wall material. As mentioned in
our previous work [16], this pseudo-strain-energy func-
tion (Equation 2) is logically possible because W = 0
when λ1 = λ2 = λ3 = 1 (this is for the undeformed
state), and W increases with increasing deformation
when λ1 ≥ λ2 > 1 and λ3 < 1. If k1 = k2 = k3 = 1,
the above pseudo-strain-energy function will reduce to
the simplest form of the Rivlin series [25, 26]. Further,
if α = 0, this will correspond to the form of the strain
energy function (for a “neo-Hooken” material) derived
by Treloar (1943) from Gaussian statistics of a network
of long chain molecules. When α is larger than 0, this
is the famous Mooney—Rivlin law for rubber-like ma-
terials. For polymer or rubber materials, the range of α

is usually between 0 and 0.15 [27].
In this paper, we assume that the directional mi-

crofibrillar stiffening factors, k1, k2 and k3, are con-
stants which do not vary with the cell wall extension
ratios or the cell expansion ratio. Consequently, from
Equations 1 and 2 the resulting three principle Cauchy
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stresses can be derived as

τi = ki G

(
λ2

i − α

λ2
i

− 1 + α

)
+ p (3)

where, G = 2C1 is the elastic constant of the cell wall
matrix.

The cell walls are permeable to water and some so-
lutes, and the cells are able to hold water under pres-
sure by a high internal concentration of solutes [28].
The turgor pressure (pc) is the difference between
the internal water pressure and the external pressure,
which is maintained by osmotic potential of the cells.
In hexagonal or cylindrical cells subjected to a posi-
tive internal turgor pressure, the cell walls experience
about twice as much tensile stress in the circumfer-
ential direction as in the axial direction. If the elas-
tic properties of the cell walls are the same in both
the axial direction and the circumferential directions,
a hexagonal or cylindrical cell would expand radially
at a faster rate than it would axially. Thus we have
k1 > k2 > k3 = 1.0. If no compressive load is applied
on the tissue, the initial reduced turgor pressure pci can
be derived from our previous analysis [16], and given by

pci = pci

k1ρ0G
= λ2iν

2
i − αλ3

2i − λ2
2iνi + αλ2

2iνi − β
(
λ4

2iνi − ανi − λ2
2iνi + αλ2

2iνi
)

λ2
2iν

2
i

(4)

where, ρ0 = 2t0/
√

3l0 is the original cell wall vol-
ume fraction (i.e. the cell wall volume over the tissue
volume when the turgor pressure is zero, t0 is the orig-
inal cell wall thickness and l0 is the original cell edge
length) when the turgor pressure is zero, β = k2/k1
is the ratio of the axial microfibrillar stiffening fac-
tor to the circumferential microfibrillar stiffening fac-
tor, α is a material constant of the cell wall [16, 27].
νi = Vi/V0 = λ2

1iλ2i is the initial cell volume ex-
pansion ratio, λ1i and λ2i are the initial extension ra-
tios respectively in the circumferential direction and
the axial direction when no load is applied on the tis-
sue. λ1i , λ2i , νi and pi all can be determined from the
previous analysis [16].

When the tissue is compressed (see Fig. 1b), the cell
surface area increases, hence the cell wall tension and
the turgor pressure will also increase. The increase in
turgor pressure will break the osmotic equilibrium and
cause cell fluid to flow out through the cell wall at a
rate which is proportional to the cell wall permeabil-
ity D and to the difference between the present turgor
pressure pc and the initial turgor pressure pci . Other
time-dependent properties of the tissue, such as visco-
elasticity or visco-plasticity of the cell walls and the
movement of extracellular fluid, are disregarded.

We will use h and s as subscripts to notate respec-
tively the horizontal walls and the slant walls of the
cells (see Fig. 1b). The cells are assumed to have a
much larger dimension in the axial direction (i.e. direc-
tion 2, which is normal to the plane of the paper) than
in the circumferential direction (direction 1), hence all
the faces in Fig. 1b are assumed to have the same axial
extension ratio λ2 (i.e. λh2 = λs2 = λ2). As discussed
in the previous paper [16], when potato or cucumber

tissue is treated either by freezing or by heating, the
static stiffness of the tissue can be dramatically reduced
[1–3] compared with that of the unprocessed one. Since
unprocessed potato or cucumber tissue is tens of times
statically stiffer than the (freezing or heating) processed
tissue, we know that cell wall stretching plays a much
more important role than cell wall bending in the com-
pressive deformation of the tissues. Consequently, we
assume no interstitial voids present between the cells,
the cell walls offer no bending resistance and hence
can be treated as hinged at the cell edges. This assump-
tion can greatly simplify the analysis, but does not very
much influence the analytical results of the tissues sub-
jected to relatively high loading rate compression. Pitt
and Chen also treated the cell walls as hinged at the
edges in their paper [19]. The main difference between
Pitt and Chen’s model [19] and ours is that their model
is two dimensional, in which the cell wall material was
treated as linear elastic, and microfibrillar stiffening was
not taken into account.

We will use Cauchy stress, τ , in the following analy-
sis unless where specified. When the tissue is subjected
to a uniform compressive stress, the characteristic

angle � will reduce from the original value 600, and
the principle Cauchy stress τ3 will always equal the
cell fluid pressure −pi . From Equation 3 we have
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2
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where, pi = pc + p0 = −τ3 is the fluid pressure inside
the cells. Owing to the fact that the original cell wall
volume fraction (i.e. the cell wall volume over the tis-
sue volume when pc = 0) ρ0 is about 0.1 or less [20]
and λ1 ≥ λ2 > 1 and λ3 < 1 for the compressed tissue,
the cell wall’s Cauchy stresses τ1 and τ2 are usually
tens of times larger than the turgor pressure pc, hence
much larger than the fluid pressure pi . To simplify the
analysis, we ignore the term pi in the above equation
and rewrite it as
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The force equilibrium conditions require

τh1λs1 = 2τs1λh1 cos � (7)

2τs2 + τh2 = 4(λh1 + λs1 cos �)λs1λ2 pc sin �/(
√

3ρ0)

(8)
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and

τh1 = 4pcλh1λ2λs1 sin �/(
√

3ρ0) (9)

If the idealised cell of Fig. 1 is compressed at a con-
stant strain rate ε̇, the cell volume expansion ratio ν

continuously decreases, hence ν is a dynamic variable
and need to be updated with time t . The cell wall exten-
sion ratios can be related to the dynamic cell volume
expansion ratio ν by

4λ2λs1(λh1 + λs1 cos �) sin �/(3
√

3) = ν (10)

Substitution from Equation 6 into Equation 9 gives
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h1 λ−2
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h1λ

2
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√

3Gρ0) (11)

From Equations 6, 8 and 10 we have
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From Equations 6, 7 and 11 we can derive
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2
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In Equations 10–13, the parameters G, α, k1 and k2 are
material properties and ρ0 is the initial cell wall volume
fraction, and all are assumed to be known for a given
species of plant or vegetable tissue. The initial turgor
pressure pc = pci for the uncompressed tissue can be
measured and the initial cell volume expansion ratio
ν = νi can be derived according to the previous analysis
[16]. For a given value of the dynamic cell expansion
ratio ν, there are five variables to be determined in the
above four Equations 10–13, those are λh1, λs1, λ2, pc

and �. Giving a characteristic angle �, the other four
variables can be solved from Equations 10–13 by an
iterative procedure [16].

Assuming that the loading rate is a constant, from
Fig. 1b, the compressive strain (engineering strain) of
the tissue can be related to the cell wall extension ratio
λs1 and the characteristic angle � by

ε = ε̇t = 1 − 2λs1 sin �√
3λ1i

(14)

where, ε̇ is the constant strain loading rate, and t is the
loading time. Once a new value of variable λs1 has been
solved from Equations 10–13, the characteristic angle
� can be updated by

� = sin−1
(

(1 − ε̇t)

√
3λ1i

2λs1

)
(15)

The above process repeated until convergence for a
given dynamic cell expansion ratio ν. For a fixed load-
ing rate ε̇, once the convergence has been achieved
for a given cell volume expansion ratio ν the associ-
ated values of λ2, λs1 and λh1 will all be determined,
hence the reduced turgor pressure can be obtained from
Equation 12, and given by

pc = pc
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The non-dimensional compressive stress (reduced en-
gineering stress) of the tissue is

σ̄ = σ

Gρ0k1

= pcρ0G(λh1 + λs1 cos �)λ2k1 − τs1t0 sin �/(λs1l0)

1.5Gρ0λ1iλ2i k1
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2
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]
(17)

and the compressive strain (engineering strain) of the
tissue is given in Equation 14. As mentioned before, the
parameters λ1i and λ2i in Equations 14 and 17 are
the initial cell wall extension ratios in the circumfer-
ential direction and the axial direction when no com-
pressive load is applied on the tissue.

In a plant or vegetable tissue, any two neighbouring
primary cell walls are glued by a thin layer of mid-
dle lamella. When the tissue is subjected to a turgor
pressure pc, there exist tensile forces (or debonding
tensions) that arise in the directions perpendicular to
each face at the edge and distribute uniformly along
the cell edge of unit length. The forces on the slant and
horizontal faces are denoted by Qs1 and Qh1 as shown
in Fig. 2b, and given by

Qs1 = (Th1 − Ts1 cos �)/(2 sin �)
(18)

Qh1 = (Ts1 − Th1 cos �)/(2 sin �)

where,

Ts1 = Ts1t0λs3λs2/λ2 = τs1t0/(λ2λs1)
(19)

Th1 = Th1t0λh3λh2/λ2 = τh1t0/(λ2λh1)

Equation 18 shows that Qs1 is a tensile force to separate
the two neighbouring cells, which increases with the
compressive strain ε, Qh1 is initially equal to Qs1, then
decreases with the increasing compressive strain ε and
becomes smaller than 0. The overall non-dimensional
shear stress (engineering stress) on the slant cell faces
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Figure 2 Effects of relative loading rate ε̇/D and the initial turgor pressure on the reduced compressive stress strain relationship of plant or vegetable
tissues: (a) pci = 0.0, (b) pci = 0.05, (c) pci = 0.1, (d) pci = 0.15.

(on the adhesive layer between the two neighbouring
primary cell walls) is

Ss1 = 1

λ2iλ1i Gρ0k1
(pcλ2λs1 − 2Qs1λ2/ l0) tan � (20)

As mentioned before, when a plant or vegetable tis-
sue of Fig. 1 is compressed at a fixed loading rate ε̇,
the cell expansion ratio ν continuously decreases with
the increasing compressive strain ε or the time t , and
is therefore a dynamic variable. The problem then be-
comes one of calculating updated values of the cell
expansion ratio ν to substitute into Equation 10 as the
tissue is compressed at a constant strain rate. Corre-
sponding to a given dynamic cell expansion ratio ν, the
weight loss percentage of the cell fluid is

W̄ =
(

1 − ν

νi

)
× 100 (21)

where, νi is the initial cell expansion ratio when the
tissue is not compressed.

As a cylindric sample of plant or vegetable tissue is
compressed by two parallel plates, the cell fluid can only
express from the cylindric surface. The instantaneous
rate of change of the cell expansion ratio ν is approxi-
mately proportional to the cell wall permeability coeffi-
cient D, the difference between turgor pressure pc and
the initial turgor pressure pci , and the ratio of the sample

surface area to the sample diameter, and given by

dν

dt
= −D

√
λ2(λh1 + λs1 cos �) λs1 sin �(pc − pci )

(22)

The numerical technique for the model is to simulate the
compression of a lattice of identical 3D hexagonal cells
at a constant compressive strain rate ε̇, and to calculate
the values of σ̄ , pc, τh1, Qs , Ss1, and W̄ at discrete time
intervals (i.e. at different compressive strains). At each
time interval, a Runge–Kutta method is used to estimate
a new value of the cell expansion ratio ν.

It should be noted that, although the microfibrillar
stiffening factors k1 and k2 have been taken into ac-
count in the model, they were treated as constants in
the above analysis. In nature, the cell wall microfibril-
lar stiffening is usually very complex. However, as long
as the microfibrillar stiffening properties k1 and k2 are
derived as functions of the cell wall extension ratios λ1,
λ2 and λ3, the pseudo-strain-energy function of the cell
wall material can be given in the form of Equation 2,
then the constitutive relations of the cell wall material
can be derived from Equations 1 and 2. Consequently,
all the mechanical properties discussed in this paper
can be obtained either by an analytic approach or by
a numerical method along the lines of this analysis. In
addition, Equation 22 presumes that there is no verti-
cal crack in the tissue during the compression, hence,
the results are valid only for compressive strains before
failure occurs. Owing to the fact that the experimentally
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measured results could be greatly different for different
plant and vegetable tissues, we did not attempt to fit the
model to any special experimental results.

3. Results and discussion
The analysis is focused on the mechanical properties of
a plant or vegetable tissue rather than a complete plant
or vegetable (which has different structures in different
parts). Our main objective is to investigate the effects
of varying cell wall permeability D and loading rate
(strain rate) ε̇ on the mechanical behaviour of plant
or vegetable tissues, hence we will fix the cell wall
microfibrillar stiffening factors at k1 = 5, k2 = 2 and
k3 = 1 and the cell wall matrix property at α = 0.1
in this paper. It has been assumed that the original cell
volume fraction rho is 0.1 or less [20], hence cell face
stretching is the main deformation mechanism. Owing
to the fact that all the results shown in the diagrams have
been normalised, they are independent of the original
cell volume fraction rho.

One may intuitively expect that increasing the cell
wall permeability coefficient D will allow cell fluid to
express more freely and hence will lower the resistance
of the tissue to compression; increasing the loading rate
(strain rate) ε̇ will give the cell fluid less time to mi-
grate out of the cell, hence help the cell turgor pressure
to be built up and thus increase the tissue stiffness.
However, as reported by Pitt and Chen [19], we also
found that the response of a plant or vegetable tissue
to compression depends on the ratio ε̇/D rather than
the values of ε̇ and D independently—although this re-
sult is very difficult to prove mathematically from the
model formulation. Pitt and Chen [19] call the ratio
ε̇/D the relative strain rate. In addition, we believe that
the size of the tissue samples has very modest effect
on the results because, firstly as long as the compres-
sive strain rate ε̇ is the same, the height of the samples
makes no difference on the results (to remain the same
compressive strain rate ε̇, the compression speed should
be larger for the bigger sample than that for a smaller
one); secondly the weight loss percentage of a tissue is
directly proportional to the surface area and inversely
proportional to the diameter, if the height of the sample
is a unit and the fluid can not express from the top and
the bottom surfaces, the ratio of the cylindric surface of
the tissue to the tissue diameter is a constant.

In a plant or vegetable tissue with idealised 3D hexag-
onal cells, Fig. 2a–d show the reduced stress-strain re-
lationship for four values of the reduced initial turgor
pressure pci and various values of the relative strain
rate ε̇/D. For each fixed reduced initial turgor pressure
pci , increasing the relative strain rate ε̇/D causes the
tissue stiffness to increase. When ε̇/D = 10 or larger,
the reduced stress-strain relationship becomes the same
as that of the elastic case in which the cell wall is im-
permeable to cell fluid (i.e. D = 0). The larger the
initial turgor pressure, the stiffer will be the plant or
vegetable tissue [16]. As observed by Pitt and Chen
[19], reducing the relative strain rate ε̇/D causes the
reduced stress-strain curve to change from concave-up
to concave-down, hence, it may be postulated that there

exists a critical relative strain rate at which compressive
stress strain relationship will be approximately linear.
Consequently, it may be possible to devise a set of com-
pression tests in which cell wall permeability D may
be estimated by varying strain rate ε̇ until an approxi-
mately linear curve is obtained [19]. The slope of this
linear curve would then depend on the initial reduced
turgor pressure, as shown in Fig. 2a–d.

Fig. 3a–d show the reduced turgor pressure pc versus
the tissue compressive strain ε for four values of the re-
duced initial turgor pressure pci and various values of
the relative strain rate ε̇/D. For each fixed reduced ini-
tial turgor pressure pci , the larger the relative strain rate
ε̇/D, the higher will be the turgor pressure pc. When
ε̇/D = 10 or larger, the pc − ε relationship becomes
almost the same as that of the elastic case in which
the cell wall is impermeable to cell fluid (i.e. D = 0).
In contrast, when ε̇/D = 0.01 or smaller, the reduced
turgor pressure pc will remain approximately the same
level as the initial turgor pressure pci .

Fig. 4a–d illustrate the reduced cell wall stress τh1
versus the tissue compressive strain ε for four val-
ues of the reduced initial turgor pressure pci and vari-
ous values of the relative strain rate ε̇/D. Since τh1 is
larger than τs1 (see Equation 7), we present results only
for τh1, i.e., the maximum reduced principle Cauchy
stress. Fig. 4a–d show that higher initial reduced tur-
gor pressure pci results in greater cell wall stresses at
a given applied strain. As observed by Pitt and Chen
[15, 19] and Zhu and Melrose [16], for a given cell wall
breaking stress, the applied strain at cell wall failure
will decrease with increasing initial cell turgor pres-
sure because the cell walls are in highly pre-stressed
state before any external loads are applied. Thus, in-
creased initial turgidity causes lower tissue strength.
As can be seen in Fig. 4a–d, the τh1 − ε curve changes
from concave-up to concave-down with decreasing rel-
ative strain rate ε̇/D. For low relative strain rates ε̇/D,
the cell wall stress or strain increases gradually, then
reaches a maximum, and then actually decreases (or
relaxes) as the tissue compressive strain ε increases.
Thus, there exists a peak point on the τh1 − ε curve if
the relative strain rate is small. As ε̇/D decreases, this
peak point is achieved at lower strains [19]. If this peak
stress is smaller than the cell wall breaking stress, cell
wall rupture will never take place.

Fig. 5a–d show the effects of relative strain rate ε̇/D
on the relationship between the reduced debonding ten-
sion Qs and the tissue compressive strain ε. Since Qh

initially equals Qs and then decreases with increas-
ing strain ε, we present results only for Qs . As can be
seen in Fig. 5a–d, the higher the initial reduced turgor
pressure pci , the larger will be the reduced debonding
tension Qs . This suggests that in plant high turgor pres-
sure could cause cell debonding. In some cooked food
or vegetables, such as potato, the turgor is replaced by
swelling of gelatinized starch inside the cells [29], the
cells could be separated by the starch swelling pressure.
If the starch swelling pressure is not high enough, ap-
plying a compressive stress on the cooked potato could
help to separate the potato cells. The relative strain rate
ε̇/D also strongly affects the Qs − ε relationship: the
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Figure 3 Effects of relative loading rate ε̇/D and the initial turgor pressure on the relationship between the reduced turgor pressure and the compressive
strain of plant or vegetable tissues: (a) pci = 0.0, (b) pci = 0.05, (c) pci = 0.1, (d) pci = 0.15.

Figure 4 Effects of relative loading rate ε̇/D and the initial turgor pressure on the relationship between the reduced cell wall tensile stress and the
compressive strain of plant or vegetable tissues: (a) pci = 0.0, (b) pci = 0.05, (c) pci = 0.1, (d) pci = 0.15.
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Figure 5 Effects of relative loading rate ε̇/D and the initial turgor pressure on the relationship between the reduced cell face debonding tension and
the compressive strain of plant or vegetable tissues: (a) pci = 0.0, (b) pci = 0.05, (c) pci = 0.1, (d) pci = 0.15.

Figure 6 Effects of relative loading rate ε̇/D and the initial turgor pressure on the relationship between the mean reduced shear stress and the
compressive strain of plant or vegetable tissues: (a) pci = 0.0, (b) pci = 0.05, (c) pci = 0.1, (d) pci = 0.15.
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Figure 7 Effects of relative loading rate ε̇/D and the initial turgor pressure on the relationship between the weight loss percentage by fluid expression
and the compressive strain of plant or vegetable tissues: (a) pci = 0.0, (b) pci = 0.05, (c) pci = 0.1, (d) pci = 0.15.

larger the relative strain rate, the greater will be the
debonding tension. When ε̇/D equals 10.0 or larger,
the debonding tension tends to that of the elastic case
in which the cell wall is impermeable to cell fluid (i.e.
D = 0). On the other hand, when ε̇/D equals 0.01 or
smaller, ε̇/D will no longer influence the Qs − ε rela-
tionship. In this case, compressing the tissue will never
result in cell debonding.

Equation 20 is the overall non-dimensional shear
stress (Ss1) on the adhesive layer between the two slant
neighbouring primary cell walls. For a turgid or com-
pressed tissue, as long as cell debonding does not hap-
pen, cell debonding tension Qs always exists. In this
case, the overall non-dimensional shear stress remains
zero or very small. However, once cell debonding has
initiated, cell debonding tension Qs drops very sharply,
this will cause a sudden increase of the overall shear
stress Ss1. This implies that cell debonding could cause
shear failure. In other words, shear failure is a result
of cell debonding. Equations 18 and 20 and Fig. 6a–d
can well explain the phenomenon when you compress a
ripen banana tissue. The deformation mechanism of the
tissue is that the cells are debonded initially by debond-
ing tension (Equation 18), then consequently deformed
by shear stress (Equation 20). Experimental evidence of
shear failure can also be found when an apple tissue is
subjected to a large compressive stress [6]. Assuming
that the cell debonding tension Qs is zero, Fig. 6a–d
present the reduced shear stress Ss1 versus the tissue
compressive strain ε for four values of the reduced ini-
tial turgor pressure pci and various values of the relative

strain rate ε̇/D. As can be seen in Fig. 6a–d, the higher
the initial reduced turgor pressure pci , the greater will
be the reduced shear stress Ss1; the higher the relative
strain rate ε̇/D, the larger will be the reduced shear
stress Ss1. For plant or vegetable tissues with an ini-
tial turgor pressure (i.e. pci > 0), if the relative strain
rate is very small, the overall shear stress on the slant
neighbouring primary cell walls will decrease with in-
creasing compressive strain, this means shear failure
will never happen.

As the cell walls are permeable, the cell fluid will
migrate out from the tissue as it is compressed. Fig. 7a–
d show the amount of fluid expressed from the tissue
versus the tissue compressive strain for four values of
the reduced initial turgor pressure pci and various values
of the relative strain rate ε̇/D. The lower the relative
strain rate, the greater amount of the fluid will express
from the tissue. While, the initial turgor pressure pci

has a very modest influence on the fluid expression.

4. Summary
A mechanical model was developed for plant or veg-
etable tissues, relating the micro mechanical features
of the individual cells to the macroscopic properties of
the whole tissue. The cell walls were treated as a per-
meable and orthotropic polymeric composite material.
Since the stiffening of the microfibrils can be incor-
porated into the pseudo-strain energy function of the
cell wall material, the model can potentially deal with
more realistic plant and vegetable tissues. Although the
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actual compression situation of a plant or vegetable tis-
sue was greatly simplified in the analysis, the results
can well explain some experimental phenomena, and
hence should give qualitative insight into the mechani-
cal response of the actual tissue.

The model predicts that the mechanical response
of a plant or vegetable tissue depends on the relative
strain rate ε̇/D rather than the values of ε̇ or D in-
dependently. With decreasing relative strain rate ε̇/D,
the compressive stress-strain curve of a tissue changes
from concave-up to concave-down, hence, it may be
postulated that there exists a critical relative strain rate
at which the compressive stress strain relationship of
the tissue will be approximately linear. Increasing tur-
gor pressure or enlarging relative strain rate ε̇/D gives
greater apparent tissue stiffness. The turgor pressure
and the cell wall permeability may be estimated from
the effective mechanical properties of the tissue [19].
The model also predicts that the cell turgor pressure
always increases with the tissue compressive strain if
the the relative strain rate does not drop. As long as
no failure (such as cell wall rupture, cell debonding,
or shear failure) occurs in the tissue, the tissue com-
pressive stress always increases with the compressive
strain. If the cell wall stress or strain does not relax, in-
creasing the initial turgor pressure decreases the stress
or strain at cell wall rupture. Increasing relative load-
ing rate decreases the cell fluid expression and increases
the the possibility of cell debonding and shear failure.
Generally shear failure coexists with cell debonding.
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